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Received 10 April 1978, in final form 20 June 1978 

Abstract. A new formulation of the stationary axisymmetric vacuum gravitational field 
equations which is substantially different from the well known formulations of Lewis and 
Ernst is presented. The basic variable is e2’ = -gllg4, and satisfies a field equation of the 
fourth differential order which may be interpreted as the condition that a certain 2-space has 
constant curvature, K = -1. The principal motivation is that for many known solutions and 
all known asymptotically flat (non-static) solutions, e’’ takes a much simpler functional 
form than either the metric coefficients, g,,, g3, and g33. or the Ernst potentials, 5%‘ and 6. 
Three methods are given for the construction of the full metric from e’’, A duality principle 
is invoked to provide a very similar field equation for the metric coefficient, = -gll. 

1. Introduction and preliminary 

In this paper, we show how to construct solutions of Einstein’s equations for the 
stationary axisymmetric vacuum gravitational field from solutions of the fourth-order 
quasi-linear partial differential equation, 

J(2AZz + 2 Cn - 4 Brz) - JzAz - JrCr - 45’ 

- BA,C, + BAzCr + 2 C A s z  + 2ACzBr  - 4BB,Bz = 0 ,  

where 

A = - 2 ( ~ r r  + ~ z z )  + (2 /r )yr ,  

C = -z(yrr + ~ z z ) - ( 2 / r ) ~ r 7  

B = ( 2 / r ) r z ,  

J = A C -  B’. 

(Subscripts denote partial differentiation, e.g. y, = ay/ar,  yrr = a 2 y / a r Z . )  This function y 
appears in the metric coefficients, gl l  and g22 = gll ,  in the Weyl-Lewis-Papapetrou 
canonical form, 

ds’ = e’”(dt - o d(6)’- e-2u{e2’(dr2 + dr2 )+r2  d(6’}, (1.2) 
where ( x ’ ,  x 2 ,  x 3 ,  x4)= (r, z, (6, t )  are cylindrical co-ordinates and time and U ,  o and y 
are functions of r and z only. The same equation (1.1) is also satisfied by y - U +a In r. 

Just as Ernst’s (1968) complex potential formulation has enabled the discovery of 
many interesting new solutions, this present formulation should assist in constructing 
relatively complicated new solutions from simple assumptions. One assumption which 
we shall explore in the accompanying paper (Cosgrove 1978a, to be referred to as 11) is 
the possibility that e” be a function of one variable only or depend in a simple manner 
on a second variable so that (1.1) reduces to an ordinary differential equation of the 
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fourth order. The six-parameter generalised Tomimatsu-Sato solutions (Cosgrove 
1977a, 1978b) and contractions such as the rotating Curzon metric (Cosgrove 1977b), a 
recently published family of Ernst (1977) and a new family in 9 3.3 of I1 are all of this 
form. In fact, it is clear from the tabulated forms of e’’ in the original paper of 
Tomimatsu and Sat0 (1973) and is a direct consequence of their ‘Rule (a)’ that e’’ is a 
function of the single variable q = ( x ’ -  1)/(1- y2) ,  where (x ,  y )  are the usual spheroidal 
co-ordinates. 

It will be necessary, first, to write down complete sets of field equations in both the 
metric tensor and Ernst potential formulations and discuss some of their transformation 
properties. A complete set of Einstein’s vacuum field equations for the metric (1.2) is 

U,, +U,, +( l / r )ur  +(1/2r2) e4”(w? +U:)= 0, ( 1 . 3 ~ )  

w r r + w Z Z  - ( l / r ) ~ ~ + 4 u , w ~ + 4 u ~ w ,  =0 ,  (1.36) 

( 1 . 4 ~ )  

(1.4b) 

( 1 . 4 ~ )  

(This is essentially the (f, 1, m) formulation of Lewis (1932) who had f =  g44 = eZu, 
1 = -g33 = r e - w  e , m = -g34 = w e’’.) These field equations remain invariant 
under the SL(2) transformation group L, given by 

( 1 . 5 ~ )  

4 u  2 
yr,+ yZz +( l / r )y ,=  -2uS -(1/2r2)e w , .  

2 -2u  2 2u  

e2u’  = p: e2u -2p1p2w eZu + p : ( w 2  eZu -r2 e-’”), 

2 2 u  2 -2u  
w ’ eZu’ = -plp3 e2‘ + (pip4 + p2p3)w e2’ - p2p4(w e - r e 

“ I 2  e 2 u ’ -  r 2  e-2u’ 

e2v’-2u’ - - e2Y-2u 

1, 
(1.5b) 

( 1 . 5 ~ )  = p :  e2u -2p3p4w eZu + p : ( w 2  eZu -r2e-2u),  

, (1.5d) 
which is represented by the unimodular matrix, 

If this transformation is applied to the Weyl static solutions, there results the family of 
solutions found by Lewis (1932) while seeking solutions for which r e-” and w were 
functionally related. This family contains the rotating cylindrically symmetric solu- 
tions. However, the group L is equivalent to a co-ordinate transformation, 

t = Pit' + p34’9 4 = P2t )  + P44’r (1.6) 
i.e. a permutation of Killing vectors, so that it does not generate essentially new 
solutions. Its importance to us below is that it generates an equivalence class of metrics 
with the same e2”-2u. 

Ernst’s complex potential formulation (Ernst 1968,1974) uses either of two complex 
functions, 

8 = eZu +i+,  (1.7) 

i,br = ( l / r )  e4uwz1 = -(1/r) e4uwr. (1.8) 

5 = (1 + %)/(I - q, 
where i,b is defined by the compatible relations, 
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We shall require Ernst's equations separated into real and imaginary parts as follows: 

U,, + uzz + (l/r)u, + f ( 1 . 9 ~ )  

@rr + @zz  + (1/r)@, - 4 ~ 4 ,  -4uZ@, = 0, (1.9b) 

y,=r(u;-u;)+$r e-4U(45-4;), (1.10a) 

+ 4 ; )  = 0, 

(1.10b) 

(1.10c) 

These equations are invariant under the SL(2) transformation group, P, defined by 

and represented by the unimodular matrix, 

This transformation converts the Weyl solutions into the Papapetrou-Ehlers (PE) 
solutions, derived by Papapetrou (1953) by considering solutions with U*, + u,w, = 0 
and by Ehlers (1959) (see also Ehlers and Kundt 1962) by seeking solutions with e2u 
and @ functionally related. Of the three independent parameters, two are trivial gauge 
parameters and the third is the so called NUT parameter. The case of a pure NUT 
transformation, with NUT parameter A ,  is given by 

a1 = a4 = cos f A ,  a2 = -a3 =sin f A.  ( 1 . 1 2 ~ )  

In this case, formulae (1.1 l a ,  6, c )  simplify to 

6' = elA[. (1.12b) 

The similarity of these two sets of field equations and transformation groups 
suggests a direct mapping from one system to the other. This mapping is the group 
element, I = I-', of a finite group of order two, defined by 

(1.13) 

(Neugebauer and Kramer 1969, Sackfield 1975, Catenacci and Diaz Alonso 1976.) We 
shall say that two solutions related by (1.13) are 'dual' to one another. Definitions and 
theorems formulated in the Ernst system have duals in the metric components system 
and vice versa. In fact the groups P and L are dual to each other. If P is an element of P 
and L and element of L, then 

re-'', w'=i*, - '  1/2  27-2u iw, e2'=r e , 
e2u '  = 

ILI-' = P, IPI-' = L 

where P1=a1,  P2=-ia2, P3=ia3, P4=a4. Thus I maps PE solutions into Lewis 
solutions and vice versa. Although (1.13) involves complex numbers, it is often easy to 
generate real-valued solutions by simply letting parameters in the original solutions be 



2392 C M Cosgrove 

complex (e.g., in the Kerr metric, let the angular momentum parameter be pure 
imaginary). We shall be concerned here primarily with the duality property and our first 
duality theorem is that y and y - U +a  In r satisfy the same fourth-order field equation. 

2. Derivation of the y equation 

The field equation (1.1) for y results from the elimination of U and 4 from the three 
equations (1.10a,b, c ) .  First, let us see to what extent equations (1.9a, 6 )  are deducible 
from (1.10a, b, c) .  Differentiate (1.lOa)and (1.10b) toobtain expressionsfor y,, yr, yrr, 
yzL ,  y,, and yzr in terms of U and (J and substitute into the two equations, yrz - 7,). = 0 
and (1 .10~) .  There results 

yrz - yz, = -2ru,E1 - 4 r e-4U4ZE2 = 0, 

yrr + yzz + ( l / r )yr  + 2 u I  + 1 e -4u 2 
+ z  = 2ruEl  + $ r e-4u4rE2 = 0, 

where El and E2 are the left hand sides of ( 1 . 9 ~ )  and (1.9b), respectively. Thus 
(1.10a, b, c )  imply (1.9a, b) whenever U&, - U,+,  f 0, i.e. whenever U and 4 are not 
functionally related. However, as we shall see below, equations (1.10a, b, c )  alone 
permit solutions for U and 4 which do not satisfy (1.9a, b )  when U and (I/ are functionally 
related. For the present, take U,$, - U,$, Z 0. 

A = A [ , , ~ ]  = 4 ~ 5  + e  

To eliminate U and 4, define 

(2 . la )  

(2.16) 

(2 . lc)  

-4u 2 
+ r ,  

B = BI,,,~ = 4uruz + 
c = c ~ , . ~ ]  = 4u l  

D = Dlr,,] = e-2u(u&, - U z $ r ) ,  

J = J C ~ , ~ ]  = 4 0 ’  = AC - B 2 .  

(2 . ld)  

(2.le) 

From (1. lo), we have 

(2.2a) 

(2.26) 

C =-2(yrr +~zz>-(2/r)yr,  (2.2c) 

J = 4(yrr + y z z  )’ - (4/r2)(y S + YI ). (2.2d) 

Now equations (2.1) suggest that the elements of the matrix (g s) should be taken as the 
components of a second-rank symmetric covariant tensor field defined on a two- 
dimensional manifold in the (r, z )  co-ordinate basis. Form the invariant, 

d12= A d r 2 + 2 B  dr dz +C dz2, (2.3) 
which shall be interpreted as a metric on the two-dimensional manifold. Choosing U 
and + as new co-ordinates (valid if and only if D # 0), the metric becomes 

d12 = 4  d ~ ’ + e - ~ ~  d+’. (2.4) 
This simple metric is in fact the metric of a space of constant negative curvature, 
K = -1. When the relation, K = -1, is written out explicitly for the metric (2.3), we 
obtain equation (1.1). The left handsideof (1.l)isprecisely -4J2(K + 1). According to 
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(2.2), equation (1.1)  is a fourth-order partial differential equation for y which, when 
J = 4 0 ’  # 0,  is the necessary and sufficient condition for the existence of functions, U 
and 9, which satisfy all of the equations (1 .9)  and (1.10).  

At first glance, our .y equation appears to be somewhat more complicated than the 
original pair of second-order equations (1.9a, b).  However, this latter pair may, at best, 
be reduced to a single fourth-order equation for one unknown function. For example, if 
$ is eliminated from (1.9a, b ) ,  there results a pair of compatible fifth-order equations 
for U. If an arbitrary combination of U and 4 is chosen as field variable, it is, in general, 
possible only to write down one fifth-order and one sixth-order equation for it. The 
only essentially distinct combinations of U and $ which satisfy fourth-order field 
equations are 8 = eZu + i$ and $* = e’’ - i$. By duality, the only essentially distinct 
combinations of U and w which satisfy fourth-order field equations are r e-2u + w and 
r e-2u - w. Thus the y equation is of optimum order but a strong argument in favour of 
the y equation is that e’’ is a much simpler function that 8 for many known solutions, 
especially the asymptotically flat (generalised) Tomimatsu-Sat0 and rotating Curzon 
solutions. 

It is easy to transform the y equation to arbitrary curvilinear co-ordinates. Let 

and define 

( 2 . 6 ~ )  

(2 .66)  

( 2 . 6 ~ )  

( 2 . 6 d )  

(2 .6e)  

The square bracket subscript indicates the co-ordinate basis with respect to which these 
quantities are calculated. We shall not insist that functions or sets of functions with this 
notation transform as tensors under change of co-ordinate basis (e.g., D and J are 
relative invariants) or even transform linearly. The subscripts will be omitted whenever 
the co-ordinate basis is clearly understood. In the (p, r )  system, the property, K = - 1 ,  
for the metric (2 .4)  reads 

J ( 2 A ,  + 2Cp, - 4B,)- J A ,  - J,Cp - 43’ -BA&, + BATCp + 2CA$, 

+ 2ACTBp - 4 B B 3 ,  = 0. (2 .7)  
The tensor symmetry inherent in equations (2 .1)  and (2 .6)  does not hold for equations 
(2.2).  So to express A ~ p , r ~ ,  etc, in terms of y ,  we must resort to the chain rule for partial 
differentiation. Writing 

V: = a 2 / a r 2  + a2/az2 + ( l / r )a /ar ,  (2 .8)  
we have 

A [ P . T ]  = -2(r:  + z z ) v : r + 4 ( r P / r ) y P ,  ( 2 . 9 ~ )  

(2 .9b)  

( 2 . 9 ~ )  



(2 .9d)  

Formulae (2.9a, 6,  c)  are written ouf explicitly in the appendix of I1 for several 
frequently used special co-ordinate systems. Note that, for an orthogonal system, 
r,r, + zpz, = 0. 

Instead of taking y as the basic field variable, we could choose A, B and C in some 
suitable co-ordinate basis as field variables and regard U, +b and y as derived quantities. 
One of the three field equations is, of course, (2.7). The other two arise from 
elimination of y from (2.9a, b, c). In the ( I ,  z )  basis, these equations are 

A, - C, = 2B,  + ( 2 / r ) B ,  A, - C,  = -2B, - ( 2 / r ) A ,  (2.10) 

where A = etc. 
The set of Einstein's equations, (1.3a, b )  and (1.4a, 6,  c), dual to the set, (1.9a, b )  

and (1.10a, b, c), relate U, w and l= y - U  and provide a fourth-order equation for i'. 
Define 

2 4 1 1 4 u 2  1 1 
A ' = 4 u ,  - - u r + 3 - ~ e  w r  = - 2 ( l r r + l z z - - l r ) + ~ ,  

r r r  r 

2 1 ?U 2 
B ' = 4 u , u , - - u Z - ~ e  w w Z  =-lz, r r  r 

4 2  1 
J '  = 4 0  " = A C ' - B " = 4 ( lrr + i;, - ' - 4 ( if + $) - 5,. 4r r 

(2 .11a)  

(2.1 1 b )  

(2.11c) 

(2.11d) 

(2.11e) 

The 
y - 4  In r satisfy identical field equations. 

functionally related. Suppose, first, that A, B and C are not all zero. Write 

equation is precisely (1.1) with primes attached to A ,  B, C and J. Clearly and 

Let us close this section by considering the cases where J = 0, i.e. where U and $ are 

1 

A = 4 M U f ,  B = 4MUrU,, c = 4MU:,  (2.12) 

where M = M ( r ,  z ) ,  U = U(r, z ) .  Observe that (1.1) is identically satisfied when J = 0. 
Equations (2.10) become 

( 2 . 1 3 ~ )  

(2.13b) 
where V: is the operator (2.8). Eliminating V : U ,  we obtain 

(US + Uf) (M,U,  -M,U,)= 0. 

There are two cases. If U ;  + Uf = 0, then either U = U ( a )  or U = U ( @ )  where 
a = r + i z ,  p = r - i z .  Take U = U ( a ) .  Solving ( 2 . 1 3 u , b )  for M, we find M =  
(a  +@)-'f(a) where f is an arbitrary function but, without loss of generality, take 
f(a)= 1 .  But now 
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whence y = y ( a )  = J [ U’(a)I2 da .  Attempting to solve these equations for U and 4, we 
find they are only compatible if U ‘ ( a )  = 0, i.e. if A = B = C = 0. Thus all solutions of 
(1.1) of the form, y = y ( a )  or y = y @ ) ,  y not a constant, are spurious. 

If MrMz - M,Ur = 0, then M and U are functionally related and so there is no loss of 
generality in putting M = 1. Now 

A = 4 U f ,  B=4UrU,, C = 4 U :  and C:U=O, (2.14) 

These equations are easily solved for U and 9, the results being 

U =f(U),  9 =!??(U), 

where f is an arbitrary function and g is related to f by 

Thus equation (1.1) and the set ( l . lOu ,  b, c )  permit 4 to be an arbitrary function of U .  

When we apply equations (1.9~2, b ) ,  we obtain additional relations between f and g, 

y f + f  e-4f g 12-  -0 .  g” - 3 f ’ g ’  = 0. 

for which (2.15) is a first integral. The final form of the solution is 

(2.16) 

where f f 1 f f 4 - f f 2 f f 3  = 1, and is precisely the general PE solution written in a form which 
shows that it results from applying the transformation group P, given by (1.1 l), to the 
Weyl static solution with U = U, 4 = 0.  

Finally, consider the case, y = constant, so that A = B = C = D = 0. Solving for U 

and 4, we find 

either e2” +i9 = constant or e’” - i$ =constant. ( 2 . 1 7 ~ )  

Thus non-trivial solutions in this class must have at least one complex metric coefficient 
and so are not physically meaningful but they are certainly of considerable value in 
understanding the transformation properties of stationary axisymmetric solutions. In 
fact, in appendix 2, we show how one of these solutions may be mapped onto the Kerr 
solution. A real positive-definite Riemannian metric may always be derived by 
formally setting 4 = i&’,  e’’ = -1. Now both equations (1.9a, 6 )  are satisfied if  

V$(e-’”) = 0. (2.176) 

These solutions have U and t,h functionally related and depend on an arbitrary harmonic 
function but cannot be generated from Weyl solutions by a transformation of the form 
(1.11). We shall call solutions characterised by (2.17a, b )  and e’’ being constant, ‘PE 
solutions of the second kind’, to distinguish them from the solutions, (2.16), which we 
shall call ‘PE solutions of the first kind’. A number of these solutions appear on the list of 
solutions with non-trivial second-rank Killing tensors (see 4 4 of 11). 

Similarly, by duality, we may distinguish Lewis solutions of the first and second 
kinds. The former are generated from Weyl solutions by the transformation (1.5). The 
latter are characterised by 

-2L 2u ~ ~ e - ~ “ = - f f ~ a ~ e  - a m e  , e-2” e-2u 2 2 L  + a 2 e  , 

r e-2u * w = c, V:(r-’ e’”) = 0, (2.18) e 2 Y - 2 u  - - kr-’ ’ 2 ,  

k ,  c constants. 
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3. Construction of the full metric; uniqueness theorems 

We shall give three methods for the construction of U and $ from a given y satisfying 
(1.1). This problem does not, in general, reduce to simple quadratures, as does the 
inverse problem, but depends on solving two independent ordinary differential equa- 
tions (at best, second-order linear). Herein lies the key to the power of the y equation 
to yield new solutions as a relatively simple functional form for e'" may give rise to 
relatively complicated Ernst potentials. 

In addition, we shall prove the following uniqueness theorems: 

Theorem 1. For a given non-constant e'' satisfying (l.l), the full set of solutions of 
Ernst's equations with this e'' is generated from a particular solution by the SL(2) 
transformation group P together with the possibility of changing the sign of $; 

Theorem 2. For a given satisfying the dual of (l.l), e2y-2u # kr-'", k constant, 
the full set of solutions of Einstein's equations with this e''-'" is generated from a 
particular solution by the SL(2) transformation group L together with the possibility of 
changing the sign of w .  

Theorem 2 is obviously the dual of theorem 1. The restrictions, e'' # constant and 
# kr-'", rule out the PE and Lewis solutions of the second kind, respectively. 

However, the following interesting collaries hold: 

Corollary 1. If e2"" satisfies the dual of (1.1) and Vi(e2y-2u)= 0, then a particular 
solution is the PE solution of the second kind given by 

k constant, and the general solution is generated by L and w'  = fw ; 

Corollary 2. If e'' satisfies (1.1) and V;(r-"' e'")= 0, then a particular solution is the 
Lewis solution of the second kind given by 

k constant, and the general solution is generated by P and 4' = *$. 

We shall work in arbitrary curvilinear co-ordinates, (p,  T), and assume that A = 
etc., have been computed from equations (2.9). The ambiguity in sign of D is 

equivalent to the trivial ambiguity in sign of + and w .  Consider only D # 0 as the cases 
where D = 0 have been shown in 0 2 to give rise to the PE solutions and, clearly, theorem 
1 holds for the PE solutions of the first kind. 

Now, from (2 .6) ,  

$,, = D-' e2"(Bu, -Au,), rL, = D-' e'"(Cu, - B U T ) .  (3.1) 

From (3.1), we may deduce linear partial differential equations for 8 = e'" +i$ and 
8* = e*" - i$. (Note that we are allowing complex-valued metrics so that 8 and 8* are 
not necessarily complex conjugates; in fact E and E* are both real for the dual of a 
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real-valued metric.) The linear equations are 

(E  + 2iD)gP -A8?  = 0 or, equivalently, ( 3 . 2 ~ )  

(E -2iD)8: -A%‘: = 0 or, equivalently, C%: - (B  +2iD)8: = 0. (3.26) 

To solve ( 3 . 2 ~ )  and (3.2b), solve the ordinary differential equations (DE) of the first 
order, 

(3.3a, b) 

C& - (B  - 2iD)% = 0, 

d ~ l d p  = -C-’(B - 2iD), d ~ l d p  = -C-’(B + 2iD), 

and write their general solutions in the form, 

l ( p ,  7)  = constant, l*(p,  7) = constant, 

respectively. Then the general integrals of ( 3 . 2 ~ )  and (3.2b) are, respectively, 

8 = f (l), 8* = g(l*), (3.4~2, b) 

where f and g are arbitrary functions of one variable. 
The solutions ( 3 . 4 ~  6)  are too general. Substituting into (2.6a, b, c, d), we find 

f’g’/(f+ g)’ = 1 ey, (3.5a) 

where 

ey = (2fPf:)-’A = (24‘X:)-’C. (3.56) 

When ey is expressed in terms of 5 and l*, it is easy to construct f ( f )  and g(f*)satisfying 
( 3 . 5 ~ ) .  The necessary and sufficient condition for the existence of f ( f )  and g([*) is that 
q satisfy Liouville’s equation, 

a 2 q / a f  a i *  = ey. (3.6) 

(This interesting equation has general integral (3.5a), taking f and g arbitrary-see 
Goursat (1896, 1898), Vessiot (1942) and references cited therein for further dis- 
cussion.) Equation (3.6) is equivalent to the y equation (2.7) and, in fact, -e-yP‘ib* is 
the Gaussian curvature of the 2-space (2.4). 

To prove theorem 1, let uo and &, be particular solutions corresponding to a given 
e”. This solution may be expressed in terms of particular functions, f&) and g&), by 

ezUo + i40 = f o ( ~ > ,  e’’,-- i40 = go(l*). 

To find the general solution, ignoring the sign ambiguity of D, we must find all f and g 
satisfying 

f’g’/(f +d2 =f;gbl(fo+go)’. 

The result is easily found to be 

afo + b f =- ago - b 
-cgo + d ’ g =  cfo+d’ 

a, b, c, d constants, ad - bc = 1. This transformation group is identical to (1.11) with the 
identification, a1 = d, a2 = -ic, a3 = ib, a4 = a. 

The above method depends on solving the ordinary DE, (3.3a)and (3.3b). These DE 
will, in many cases, involve transcendental functions of both p and 7 and so will not be 
readily integrated. Even in cases where y is a function of one variable only, say 
y = y(7) ,  the DE will frequently take unfamiliar, complicated forms. We shall now give 
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alternative methods for constructing the Ernst potentials which involve linear ordinary 
DE of the second or third order. We are free to choose the independent variable, so that 
if y = Y ( T )  or i f  yCp, 7 )  depends in a simple manner on p ,  then it is highly advantageous 
to construct DE in which p is the independent variable and T is a constant parameter. 

Let us now construct a linear ordinary DE of the third order which has 

(3.7) 
- *2 e-?” + e ? “  

F~ =e-’”, F~ = -& e-2u , F. - 
as linearly independent solutions. Substituting (3 . ln ,b)  into any of (2.6a, 6, c, d )  and 
solving for U,, we find 

u , = B A - ’ u ,  + D A - ’ ( A  -4~:)”~. (3.8a) 

Now (3.la, 6 )  become 

4, = -e”(A - 4 U ~ ) ’ l ’  (3.8b) 

( 3 . 8 ~ )  

From (3.8a), U,, may be expressed in terms of U ,  and U,,, and then, from (3.86, c), the 
relation $pT = Grp becomes the following DE for U ,  

4, = A - - ’  e2”[4Du, - B ( A  -4~4,)  2 112 1 .  

2Au,, -3Au: - A p u ,  +A’+@(A -4u:) l”= 0 ,  (3.9) 

where 

@=@rP,, i=$D-’(-2AB, + B A ,  + A A , ) .  (3.10) 

Thus F = F1 is a particular solution of the Appell equation (Appell 1889, Cosgrove 
1977c, appendix 1 below): 

(3.11) (AF,, - + A ~ F ,  -A”)’ + @?(F; -AF’) = 0. 

From theorem 1, the general solution of (3.11) is 

F = ( Y : F ~ + ~ c x ~ ( Y ~ F ~ + ( Y ~ F ~  (3.12) 

but note that (3.11) alone without boundary conditions permits ( Y I  and a2 to be 
arbitrary functions of T rather than constants. 

Now, Appell equations may always be converted to third-order linear equations 
(Appell 1889) or to Riccati or second-order linear equations (see appendix 1). Divide 
(3.1 1) throughout by A& and differentiate. The resulting expression factorises into 
two linear factors. The second-order factor gives rise to two spurious singular integrals 
and the third-order factor gives the differential equation, 

which has F1, F2 and Fi as linearly independent solutions. 
To construct a Riccati equation from (3.9), set 

U ,  = -A’”M(l + M 2 ) - ’ ,  

( A - ~ u ~ ) ” ~ = A ’ ” ( ~  - -MZ)( l  +M’)-’. 

The function M satisfies the Riccati equation. 

M, = (4 A ’ / ?  + f @ A - ’ )  + (- ; A  t 2  + + @ A - ~ ) M * .  

(3.14) 

(3.15) 
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Next, changing variable to L'", where E = *1 is a two-valued parameter, according to 

(3.16) 

we obtain the second-order linear equation, 

LE:+A-'(-fAP + E ~ @ ) L ~ ' + ~ E ~ A L " ' =  0. (3.17) 

The problem of finding appropriate boundary conditions for the DE, (3.13) and 
(3.17), will now be tackled. This leads to another DE of second-order linear or Riccati 
type but it is very likely that, even for very complicated solutions, this equation may 
yield to a simple quadrature. Let the boundary conditions be specified at p = po, po 
constant (normally a curve in the (p, .r)-plane but may be a singular curve, a singular 
point or at infinity, in which case suitable asymptotic techniques must be employed). 

First, we construct a Riccati equation for M in independent variable 7 containing p 
as a constant parameter. From (3.8a), (3.9) and (3.14), we find 

M,=X+PM+2M2 (3.18) 

where 

Similarly, write (3.15) as 

M,=X+ZM2 
where 

(3.19) 

x = ; A ' / ~ + ~ @ A - ' ,  = - i ~ 1 / 2 + ; @ ~ - 1 .  2 

The compatibility conditions for (3.18) and (3.19) are 

x, 4, -xP = 0, -Pp + 2 z x  - 2 x z  = 0, z, -ZP +zP = 0. 

The secondof these is satisfied identically. The first is identical to the third and their left 
hand sides are precisely 1/64D3 times the left hand side of the y equation (2.7), thus 
providing another proof of (2.7). 

Now let M = Mo(p, T )  be the particular solution of (3.18) and (3.19) satisfying the 
boundary condition, 

Mo(Po, 7 )  = CLo(T) (3.20) 
where CL = Ko(7)  is any particular solution of the Riccati equation, 

dCL/dT = a P O , T ) +  Y ( P 0 ,  T)CL +Z(po, T)cL2. (3.21) 
This Riccati equation may be converted to a second-order linear equation by standard 
methods but may already be linear @(Po, T )  = 0) or of Bernoulli type ( 8 ( p o ,  T ) =  0). 
Choose PO in order to achieve the simplest DE for CL and then choose the simplest 
solution. If x(po, T ) = O ,  take p0(7)= 0. If space-time is symmetric about the equa- 
torial plane and i f  p = p o  is the equatorial plane and the vectors slap and a / a T  are 
orthogonal there (a very common situation), then x(po, T ) =  0 and Z(po ,  T ) -  0 and so 
~ o ( T ) = O .  The general solution of (3.21) is 

CL =CLo+CL1/(CL2+c) 
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where c is the constant of integration and 

exp{ laT [ P(po, 7‘) -t 2z(po, T ‘ ) / - b ( T ‘ ) ]  dT’}, ( 3 . 2 2 ~ )  

(3.226) 

where a is a fixed constant. 

the particular solution, M = MO. Define 
The general solution of (3.18) and (3.19) may be constructed by quadratures from 

VO = P I  exp( [’ 2Z(p’, T)Mo(P’, 7 )  dp’},  

WO = - j,: z(P‘, T)VO(P’, T )  dp’ + P Z .  

PO 

The functions, MO, Vo and WO, satisfy the set of six useful relations: 

( 3 . 2 3 ~ )  

(3.236) 

M o p  = x + ZMi, vop = 2ZMOV0, WO, = -zv,, ( 3 . 2 4 ~ )  

MO7 = x + rMo + Z M i ,  (3.246) 

Now the general solution of both (3.18) and (3.19) is 

vo, = (r + 2ZMO)VO, WO, = -zv,. 

M = MO + Vo( WO + (Y la ; )- ( 3 . 2 5 ~ )  

where the labelling, ala;’, of the constant of integration anticipates the relations (1.1 1) 
between the general solution and a particular solution. In a similar spirit, define 

v = Vo(a2Wo+al)-2, (3.256) 

w = (a4 WO + aJ)((Y2 WO+ (Yl)-’ .  ( 3 . 2 5 ~ )  

These functions, M,  V and W, satisfy the same set of six relations, (3.24a, b), as MO, VO 
and WO. 

To fix a particular solution of (3.13) for eC2”, set M = M O  in (3.14). Now (3.14) and 
(3.8a, b, c )  may be integrated to give U and cl, explicitly in terms of MO, VO and WO. The 
results are 

F1 = V i ’  (1 + M t  ), (3.26a) 

F2=Mo+ V,’Wo(l+Mi), (3.266) 

F3 = Vo + 2Mo WO+ Vi’ W i  (1 + M i ) .  ( 3 . 2 6 ~ )  

If MO, VO and WO are replaced by M ,  V and W, respectively, then F 1 ,  F2 and F3 
transform according to (1.11). This provides an independent proof of theorem 1 
when D # 0. Partial derivatives of F1, F2 and F3 are calculated using the relations 
(3.24a, b). Thus, at p = pO, we have the boundary conditions: 

( 3 . 2 7 ~ )  

(3.276) 

( 3 . 2 7 ~ )  
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F 2 p  = (A(po, ~))‘/’[1 + ~ P ; ~ P ~ c L o ] ,  (3.27e) 

($A-1/2F2p)p = -Z(po, T ) + p ; 1 p 2 [ X ( p ~ ,  T ) - Z ( P o ,  T ) p ; l ,  (3.27f) 

(3.27g) -1 2 
F 3  = ~1+2cL2PO+P 1 p2 (1 +pi), 

(3.27h) 

($A-1’2F3p)p = - Z ( p o ,  T)(CLI + ~ c L ~ c L o ) + P ; ~ P ~ [ X ( P O ,  ~)-z(Po, 7)p;I. (3.271‘) 

Similarly, choose a particular solution of the L‘”equation (3.17) by setting M = MO 
in (3.16) and integrating. Another linearly independent solution is evident when we 
replace MO and VO by M and V, respectively. The two solutions are 

(3.28a) L1 - e  o 11 +E~MoI, 
L?) = e - f i Q  [ wO+ Ei(vO+MO w,,)], (3.28b) 

-1 2 
F3p =2(A(po, 7))1 /2[cL2+cL1 ~ 2 ~ 0 1 ,  

(c) - - c i Q ~ - 1 / 2  

where 

Q = 1 1’ @(p’, T)(A(P’, T))-’ dp‘. 
P O  

If we replace MO, VO and WO by M,  V and W, then 

L‘,“ becomes culL(;’ + a2L?), 

The relationship between L‘” and L‘-” is expressed by 

L?) becomes a3L:“ +a4L?), 

L“’ I p  - - ? € i ~ 1 / 2  1 e-2ciQ Ll- ( 6 )  , L?: = t E i ~ 1 / 2  e - 2 r ~ Q  L; ( E )  . (3.29) 

From these formulae, we deduce the following boundary conditions at p = po:  

~ ‘ ; ’ = p ; ~ / ~ [ ~ + ~ i p ~ ] ,  (3.30a) 

LI”= C L ; ” ~ [ C L ~ + E ~ ( C L ~  +p2p0)1, (3.30b) 

L‘;d = 1 Ei(A(po, [ 1 - ~ i p ~ ] ,  ( 3 . 3 0 ~ )  

Lf: = $ ei(A(pO, ~ ) ) ” ~ p ; ” ~  [p2 - E i ( p ~ +  p2p0)I. (3.30d) 

In terms of these two solutions, explicit formulae for e2“ and II, are given by 

F~ = ,T?)L$~), F~ = ~ L Y ) L $ - ~ )  + $ L ! - E ) L ( ~ )  2 3  F~ = L~)L$-.) .  (3.31) 

Finally, we consider the effect of a change of co-ordinate basis on M, V and W from 
(p, T )  to (p’, 7’). Regard M as Mfp,rl etc, and write M’ = Mlp,,r,l etc. Let the boundary 
condition on M’ be determined by requiring that F1, F2 and F3 be invariants under a 
change of basis, i.e. they do not undergo a transformation (1.11). 

(3.32a) 

(3.32b) 

M I  = (PM - 2DA-’12 a ~ / a p ‘ ) ( 2 ~ ~ - ’ / * ( a ~ / a p ’ ) ~  +PI-’, 

[ 1 +eiM’] = 

[ W’ + Ei( V’ + M’ W’)] 

(2P)-’”(P - Z E ~ D A - ” ~  a ~ / a p ’ ) V - ’ / ~ [  1 + E ~ M ] ,  v , - - 1 / 2  

vl-1/2 

- - A,-1/4 (2P)-1’2(P-2~iDA-1/2 aT/apf)V-1/2[ W + ei( V + M W ) ] ,  ( 3 . 3 2 ~ )  

A’ = A[P~ ,7~1  = A(ap/ap’)’+ 2B(ap/ap‘)(a~/ap’) + C(aT/ap’)2, 

p = A1112 + A ~ / ~  ap/ap’+BA-’/2 aT/apt. 

where 
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Appendix 1. Algorithm for the reduction of Appell equations to second-order linear 
equationst 

The differential equation of Appell (1889, pp. 401-15) is the second-order second- 
degree equation, 

64.1) 2 
+ ( x ,  y ,  y ’ ,  y”)= a o y r f 2  + U ~ Y ”  + U ~ Y  + 261y’y’‘+ 2b2yy“S 2b3yy‘ = 0 ,  

a. = ao(x)  etc, a. # 0, the prime denoting dldx, subject to the requirement that the 
general solution take the form, 

y = h 2 y l ( X ) + h k Y 2 ( x ) + k 2 Y 3 ( X ) ,  (‘4.2) 

where h and k are the constants of integration. The necessary and sufficient condition 
for (A.2) to hold is that A = A ( x )  can be found such that d+/dx - A +  factorises into two 
linear factors. One factor is of the second order of differentiation and gives rise to a pair 
of singular integrals of (A.1); the other yields a third-order linear DE for y with y 1 ,  y 2  

and y 3  as linearly independent solutions. 
Rewrite (A. 1) in the form, 

( y  ” + 2Ay‘  + By)’ - (Cy” + 2Dyy’ + Ey ’) = 0 (‘4.3) 

and use the change of variable, y = z exp(-j DC-’ dx), C f 0, to put the equation in the 
slightly simpler form, 

r$(x, 2 ,  z ‘ ,  z”)= ( Z ” +  2Az‘ +Bz)*  - (&’* +Bz’) = 0. (A.4) 

(If C = 0 in (A.3), then (A.2) forces D = E = 0 also, so that (A.3) reduces trivially to a 
linear equation.) If (A.4) is an Appell equation, then there exists p,(x) such that 
d4ldx - p,4 contains the factor z”+ 2Az’  +Bz .  The conditions for this are 

e’- p,E + 4 A E  = 0, E - B E  = 0, ,??’-PE = 0, 

and the solutions of these equations may be expressed in the form, 

Thus a canonical form for the Appell equation is 

[ z ” -  ( M ‘ / M ) z ’ - M ’ z ] ~  = N2[z’’ -M’z’]. 64.6) 

To obtain a third-order linear equation, divide both sides of (A.6) by M 2 N 2 ,  differen- 
tiate and then remove the common factor t”- ( M ’ / M ) z ’  - M 2 z .  

Our parametrisation seems to assume that B S O  and E.>O but this is only for 
convenience. If, for example, < 0, then one may formally set N = ii?, i? real, in the 
formulae below but instead we shall allow M and N to be either real or pure imaginary 
(though not both pure imaginary) as we shall be considering below complex-valued 
functions of the real variable x anyway. To avoid complications, restrict the domain of x 
to a region where M, M-’,  M ’ ,  M”,  N,  N - ’  and N‘ are all continuous. 

The change of dependent variable, 

U = M - ’ z ’ / z ,  (‘4.7) 
t A more detailed treatment of this algorithm is given in Cosgrove ( 1 9 7 7 ~ ) .  



Axisymmetric gravitational field equations I 2403 

converts (A.6) into the first-order DE, 

[ U ' + M ( U 2 -  1)]'= N 2 ( U 2 -  1). (A.8) 

Now there are several obvious changes of variable which will convert the right hand side 
of (A.8) into a perfect square so that (A.8) will factorise into a pair of Riccati equations 
together with trivial factors which represent the singular integrals, U = +1  and U = -1. 
The most natural changes of variable are 

(A.9a, 6)  

(A.9c) 

= =tl, e2 = + l ,  c3 = *l, independently, and lead to the following pairs of 

u 5 = E 5 N U 2  + 1 M ( 1 - U ; ), (A. 1 Oa, b) 

(A.lOc) 

U: =(V+-E,)/(U--E1), 

U3 = U-' + - E 3 ( r 2  - 1 p 2 ,  

U 2  = U + €*(U2 - 1 y 2 ,  

where 
Riccati equations, one for each value of e4 = * 1, c5 = * 1, € 6  = * 1, 

U ;  = ElMU1+.4€4N(l -U:), 
U ;  =~M(l -u : ) - tEg iN( l+u3) .  2 

The following standard substitutions, 

u 1 =  2-~4N-~vi /v1 ,  U 2  = 2M- 'v; /v2 ,  ( A . l l a ,  b) 

U 3  = 2(M+-E6iIv-1U;/v3, (A.l  l e )  

convert these Riccati equations into the second-order linear equations, 

v;+(-N'/N--E1M)v; -$N2u1 = 0 ,  ( A . 1 2 ~ )  

(A.12b) 

ul;-[(M+-E6iRJ)I/(M+-E6iR?]v; - i (M2+N2)v3 = 0. ( A . 1 2 ~ )  

(There are now twelve variables labelled u l ,  u2  or u 3  and all are related to each other by 
fractional linear transformations of the form U, = (au, + b)/(cu, + d ) ,  a ,  b, e, d real or 
complex constants. The reader should be aware that any variable of the form, 
U' = (au, + b)/(cu, + d) ,  a, 6, c, d functions of x, satisfies a Riccati equation and so leads 
to a second-order linear equation for a dependent variable of the form, C = f ( x ) v ,  + 

Equation (A.7) may be integrated to express z explicitly in terms of u l ,  t i 2  or v3. The 

1 2  U; + ( - M ' / M  - - E ~ N ) v S  -7M ~2 = 0, 

g(x >v :.I 
results are 

z = exp ( 1 )  -e1  M dx [4N-*vi2 - U : ] ,  

z =M- 'exp(-e j  1 N dx)02t.;. 

( A . 1 3 ~ )  

(A. 13 6)  

z =4(M+-E6iiv-2U;2 + v i .  ( A . 1 3 ~ )  

None of the sign ambiguities indicated by c1, . . . , €6 are manifest in these formulae for 
2. Clearly, the general solution of the Appell equation takes the form (A.2). 

Now the Appell equation (3.1 1) is of the form (A.6) with M =A"', N = i0A- l  and 
x = p. The function M defined by (3.14) and satisfying the Riccati equation (3.15) may 
be identified with u3 with c 3 = ~ 6 = + 1 .  The function L'" defined by (3.16) and 
satisfying the linear equation (3.17) may be identified with v2 with € 5  = --E. Here, 
u3 = (u2 - d ) / ( l -  ciu2). 
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Appendix 2 

Here, it will be demonstrated that the Kerr solution can be generated from a complex- 
valued PE solution of the second kind by two simple elements of the transformation 
groups, Land P, defined by ( 1 . 5 )  and ( l . l l ) ,  respectively. Start with the PE solution of 
the second kind, 

where (x, y )  are prolate spheroidal co-ordinates defined by r = K ( x ~ -  1 ) 1 / 2 ( 1  - y 2 ) ’ / ’ ,  
z = K X Y  and K ,  p ,  q are real constants, K > 0, p 2  + q 2  = 1. Now, apply first the element of 
L and then the element of P given, respectively, by 

( P1 P :)=io i), (z: f f2)=2-1’2(  1 -1). (A .15a ,b )  
P P  f f4  --I 

The result is the (real) Kerr solution with mass m = K P - ’  and angular momentum m2q 
given by Ernst’s formula, 5 = p x  - iqy. 

What we have just done is generate a non-trivial asymptotically flat solution from a 
solution of Laplace’s equation, Vf(e-’”) = 0, V f  defined by (2.8). This remarkable result 
should surprise most those readers already most familiar with the transformation 
properties of stationary axisymmetric fields. The question which immediately arises is: 
what are the most general boundary conditions on Laplace’s equation which will permit 
the generation of non-trivial asymptotically flat solutions by the above method? The 
answer is a little disappointing: the two-parameter Kerr solution is the unique solution 
to this problem (proof in Cosgrove 1978b). (This generation of the Kerr solution has 
been discovered independently by Herlt ( 1 9 7 8 t I  wish to thank the referees for 
drawing this to my attention.) 
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